Revision as of 10:14, 3 May 2023 by Admin (Created page with "'''Solution: D''' The distribution function of an exponential distribution with mean 0.5 is <math>F(x) = 1-e^{-2x}</math>. <math display = "block"> \operatorname{P}(X > 0.7...")
Exercise
ABy Admin
May 03'23
Answer
Solution: D
The distribution function of an exponential distribution with mean 0.5 is [math]F(x) = 1-e^{-2x}[/math].
[[math]]
\operatorname{P}(X \gt 0.7 | X \gt 0.4 ) = \frac{\operatorname{P}(X \gt 0.7)}{\operatorname{P}(X \gt 0.4)} = \frac{e^{-1.4}}{e^{-0.8}} = 0.549.
[[/math]]
This can be more efficiently solved using the memoryless property:
[[math]]
\operatorname{P}( X \gt 0.7 | X \gt 0.4 ) = \operatorname{P}(X \gt 0.3) = e^{-0.6} = 0.549.
[[/math]]