Revision as of 11:41, 3 May 2023 by Admin (Created page with "For a certain health insurance policy, losses are uniformly distributed on the interval [0, <math>b</math>]. The policy has a deductible of 180 and the expected value of the u...")
ABy Admin
May 03'23
Exercise
For a certain health insurance policy, losses are uniformly distributed on the interval [0, [math]b[/math]]. The policy has a deductible of 180 and the expected value of the unreimbursed portion of a loss is 144.
Calculate [math]b[/math].
- 236
- 288
- 388
- 450
- 468
ABy Admin
May 03'23
Solution: D
If [math]L[/math] is the loss, the unreimbursed loss, [math]X[/math] is
[[math]]
X = \begin{cases}
L, \quad L \leq 180 \\
180, L \gt 180
\end{cases}
[[/math]]
The expected unreimbursed loss is
[[math]]
\begin{align*}
144 &= \operatorname{E}(X) = \int_0^{100} l[f(l)] dl + 180 P(L \gt 180) = \int_0^{180} l \frac{1}{b} dl + 180 \frac{b-180}{b} \\
&= \frac{l^2}{2b} |_0^{180} + 180 - \frac{180^2}{b} = \frac{180^2}{2b} + 180 - \frac{180^2}{b} \\
144b &= 180^2 /2 + 180b - 180^2 \\
16200 &= 36b \\
b &= 450.
\end{align*}
[[/math]]