Revision as of 16:42, 3 May 2023 by Admin (Created page with "'''Solution: A''' We have <math display = "block"> \begin{align*} 0.95 = \operatorname{P}(X < k | X > 10000) = \frac{\operatorname{P}(X < k) - \operatorname{P}(X \leq 10000...")
Exercise
ABy Admin
May 03'23
Answer
Solution: A
We have
[[math]]
\begin{align*}
0.95 = \operatorname{P}(X \lt k | X \gt 10000) = \frac{\operatorname{P}(X \lt k) - \operatorname{P}(X \leq 10000)}{1-\operatorname{P}(X \leq 10000)} \\
0.95[1 − \operatorname{P}( X ≤ 10, 000)]= 0.9582 − \operatorname{P}( X ≤ 10, 000) \\
\operatorname{P}(X \leq 10000 ) = \frac{0.9582-0.95}{1-0.95} = 0.164 \\
0.164 = \Phi(\frac{10000-12000}{c}).
\end{align*}
[[/math]]
The z-value that corresponds to 0.164 is between -0.98 and -0.97. Interpolating leads to z = –0.978. Then,
[[math]]
0.164 = \Phi \left( \frac{10000 - 12000}{c}\right) \Rightarrow -0.978 = \frac{-2000}{c} \Rightarrow c = 2045.
[[/math]]