Revision as of 20:28, 3 May 2023 by Admin (Created page with "'''Solution: D''' Let <math>N</math> be the number of claims filed. We are given <math display = "block"> P[N = 2] = \frac{e^{-\lambda}\lambda^2}{2!} = 3 \frac{e^{-\lambda...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 03'23

Answer

Solution: D

Let [math]N[/math] be the number of claims filed. We are given

[[math]] P[N = 2] = \frac{e^{-\lambda}\lambda^2}{2!} = 3 \frac{e^{-\lambda}\lambda^4}{4!} = 3 \cdot P[N=4] 24 \lambda^2 = 6 \lambda^4 [[/math]]

which implies that [math]\lambda = 2 [/math]. Therefore, [math]\operatorname{Var}[N] = \lambda = 2 [/math].

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00