Revision as of 21:11, 3 May 2023 by Admin (Created page with "'''Solution: E''' Let <math>X</math> = number of group 1 participants that complete the study. <math>Y</math> = number of group 2 participants that complete the study. Now...")
Exercise
ABy Admin
May 03'23
Answer
Solution: E
Let
[math]X[/math] = number of group 1 participants that complete the study.
[math]Y[/math] = number of group 2 participants that complete the study.
Now we are given that [math]X[/math] and [math]Y[/math] are independent. Therefore,
[[math]]
\begin{align*}
\operatorname{P}[ [( X ≥ 9 ) ∩ ( Y \lt 9 )] \cup \operatorname{P}[( X \lt 9 ) ∩ ( Y ≥ 9 )] ] &= \operatorname{P}[ ( X ≥ 9 ) ∩ ( Y \lt 9 ) ] + \operatorname{P}[( X \lt 9 ) ∩ ( Y ≥ 9 ) ] \\
&= 2 \operatorname{P}[( X ≥ 9 ) ∩ ( Y \lt 9 ) ] \\
&= 2 \operatorname{P}[ X ≥ 9 ] \operatorname{P}[Y \lt 9 ] \\
&= 2 \operatorname{P}[ X ≥ 9] \operatorname{P}[ X \lt 9] \\
&= 2 \operatorname{P}[ X ≥ 9] (1 − \operatorname{P}[ X ≥ 9] ) \\
&= 2[\binom{10}{9}(0.2)(0.8)^9 + \binom{10}{10}(0.8)^{10}][1-\binom{10}{9}(0.2)(0.8)^9-\binom{10}{10}(0.8)^{10}]\\
&= 2 [ 0.376][1 − 0.376] = 0.469
\end{align*}
[[/math]]