Revision as of 23:35, 3 May 2023 by Admin (Created page with "'''Solution: A''' Let N denote the number of warranty claims received. Then, <math display = "block"> 0.6 =\operatorname{P}( N =0) =e^{−c} ⇒ c =− \ln(0.6) =0.5108. </m...")
Exercise
ABy Admin
May 04'23
Answer
Solution: A
Let N denote the number of warranty claims received. Then,
[[math]]
0.6 =\operatorname{P}( N =0) =e^{−c} ⇒ c =− \ln(0.6) =0.5108.
[[/math]]
The expected yearly insurance payments are:
[[math]]
\begin{align*}
&5000[ \operatorname{P}( N = 2) + 2 \operatorname{P}( N = 3) + 3\operatorname{P}( N = 4) + \cdots] \\
&= 5000[ \operatorname{P}( N =+ 1) 2 \operatorname{P}( N =+ 2) 3\operatorname{P}( N =+ 3) + \cdots] − 5000[ \operatorname{P}( N =+ 1) \operatorname{P}( N =+ 2) \operatorname{P}( N =+ 3) + \cdots] \\
&=5000 \operatorname{E}( N ) − 5000[1 − \operatorname{P}( N =0)] =5000(0.5108) − 5000(1 − 0.6) =554.
\end{align*}
[[/math]]