Revision as of 21:09, 4 May 2023 by Admin (Created page with "An actuary determines that the claim size for a certain class of accidents is a random variable, <math>X</math>, with moment generating function <math display = "block"> M_X(...")
May 04'23
Exercise
An actuary determines that the claim size for a certain class of accidents is a random variable, [math]X[/math], with moment generating function
[[math]]
M_X(t) =(1 − 2500t )^{-4}.
[[/math]]
Calculate the standard deviation of the claim size for this class of accidents.
- 1,340
- 5,000
- 8,660
- 10,000
- 11,180
May 04'23
Solution: B
We are given that
[[math]]M_x(t) = \frac{1}{(1-2500t)^4}[[/math]]
for the claim size [math]X[/math] in a certain class of accidents. First, compute
[[math]]
M_x^{'}(t) = \frac{(-4)(-2500)}{(1-2500t)^5} = \frac{10000}{(1-2500t)^5}, \, M_x^{''}(t) = \frac{(10 000)(−5)(−2500)}{(1-2500t)^6} = \frac{125000000}{(1-2500t)^6}.
[[/math]]
Then
[[math]]
\begin{align*}
\operatorname{E}[X] = M_x^{'}(0) = 10,000 \\
\operatorname{E}[X^2] = M_x^{''}(0) = 125,000,000 \\
\operatorname{Var}[X] = E[X^2] - (E[X])^2 = 125,000,000 - (10,000)^2 = 25,000,000 \\
\sqrt{\operatorname{Var}[X]} = 5,000.
\end{align*}
[[/math]]