Revision as of 21:30, 4 May 2023 by Admin (Created page with "'''Solution: B''' We are given that <math display = "block">M_x(t) = \frac{1}{(1-2500t)^4}</math> for the claim size <math>X</math> in a certain class of accidents. First, co...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 04'23

Answer

Solution: B

We are given that

[[math]]M_x(t) = \frac{1}{(1-2500t)^4}[[/math]]

for the claim size [math]X[/math] in a certain class of accidents. First, compute

[[math]] M_x^{'}(t) = \frac{(-4)(-2500)}{(1-2500t)^5} = \frac{10000}{(1-2500t)^5}, \, M_x^{''}(t) = \frac{(10 000)(−5)(−2500)}{(1-2500t)^6} = \frac{125000000}{(1-2500t)^6}. [[/math]]

Then

[[math]] \begin{align*} \operatorname{E}[X] = M_x^{'}(0) = 10,000 \\ \operatorname{E}[X^2] = M_x^{''}(0) = 125,000,000 \\ \operatorname{Var}[X] = E[X^2] - (E[X])^2 = 125,000,000 - (10,000)^2 = 25,000,000 \\ \sqrt{\operatorname{Var}[X]} = 5,000. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00