Revision as of 21:30, 4 May 2023 by Admin (Created page with "'''Solution: B''' We are given that <math display = "block">M_x(t) = \frac{1}{(1-2500t)^4}</math> for the claim size <math>X</math> in a certain class of accidents. First, co...")
Exercise
May 04'23
Answer
Solution: B
We are given that
[[math]]M_x(t) = \frac{1}{(1-2500t)^4}[[/math]]
for the claim size [math]X[/math] in a certain class of accidents. First, compute
[[math]]
M_x^{'}(t) = \frac{(-4)(-2500)}{(1-2500t)^5} = \frac{10000}{(1-2500t)^5}, \, M_x^{''}(t) = \frac{(10 000)(−5)(−2500)}{(1-2500t)^6} = \frac{125000000}{(1-2500t)^6}.
[[/math]]
Then
[[math]]
\begin{align*}
\operatorname{E}[X] = M_x^{'}(0) = 10,000 \\
\operatorname{E}[X^2] = M_x^{''}(0) = 125,000,000 \\
\operatorname{Var}[X] = E[X^2] - (E[X])^2 = 125,000,000 - (10,000)^2 = 25,000,000 \\
\sqrt{\operatorname{Var}[X]} = 5,000.
\end{align*}
[[/math]]