Revision as of 22:40, 4 May 2023 by Admin (Created page with "'''Solution: A''' Let g(y) be the probability function for <math>Y = X_1X_2X_3. </math> Note that <math>Y = 1 </math> if and only if <math display = "block"> X_1 = X_2 = X_...")
Exercise
May 04'23
Answer
Solution: A
Let g(y) be the probability function for [math]Y = X_1X_2X_3. [/math] Note that [math]Y = 1 [/math] if and only if
[[math]]
X_1 = X_2 = X_3 = 1.
[[/math]]
Otherwise, [math]Y = 0 [/math]. Since
[[math]]
\begin{align*}
\operatorname{P}[Y = 1] &= \operatorname{P}[X_1 = 1 \cap X_2 = 1 \cap X_3 = 1] \\
&= \operatorname{P}[X_1 = 1] \operatorname{P}[X_2 = 1] \operatorname{P}[X_3 = 1] = (2/3)^3 \\
&= 8/27.
\end{align*}
[[/math]]
We conclude that
[[math]]
g(y) = \begin{cases}
\frac{19}{27}, \quad y = 0 \\
\frac{8}{27}, \quad y = 1 \\
0, \, \textrm{otherwise}
\end{cases}
[[/math]]
and
[[math]] M(t) = E[e^{y_t}] = \frac{19}{27} + \frac{8}{27}e^t.[[/math]]