Revision as of 22:40, 4 May 2023 by Admin (Created page with "'''Solution: A''' Let g(y) be the probability function for <math>Y = X_1X_2X_3. </math> Note that <math>Y = 1 </math> if and only if <math display = "block"> X_1 = X_2 = X_...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 04'23

Answer

Solution: A

Let g(y) be the probability function for [math]Y = X_1X_2X_3. [/math] Note that [math]Y = 1 [/math] if and only if

[[math]] X_1 = X_2 = X_3 = 1. [[/math]]

Otherwise, [math]Y = 0 [/math]. Since

[[math]] \begin{align*} \operatorname{P}[Y = 1] &= \operatorname{P}[X_1 = 1 \cap X_2 = 1 \cap X_3 = 1] \\ &= \operatorname{P}[X_1 = 1] \operatorname{P}[X_2 = 1] \operatorname{P}[X_3 = 1] = (2/3)^3 \\ &= 8/27. \end{align*} [[/math]]

We conclude that

[[math]] g(y) = \begin{cases} \frac{19}{27}, \quad y = 0 \\ \frac{8}{27}, \quad y = 1 \\ 0, \, \textrm{otherwise} \end{cases} [[/math]]

and

[[math]] M(t) = E[e^{y_t}] = \frac{19}{27} + \frac{8}{27}e^t.[[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00