Revision as of 14:33, 5 May 2023 by Admin (Created page with "'''Solution: C''' We are given <math display = "block"> f(t_1,t_2) = 2/L^2, \, 0 \leq t_1 \leq t_2 \leq L. </math> Therefore, <math display = "block"> \begin{align*} \...")
Exercise
May 05'23
Answer
Solution: C
We are given
[[math]]
f(t_1,t_2) = 2/L^2, \, 0 \leq t_1 \leq t_2 \leq L.
[[/math]]
Therefore,
[[math]]
\begin{align*}
\operatorname{E}[T_1^2 + T_2^2] &= \int_0^L \int_0^{t_2} (t_1^2 + t_2^2) \frac{2}{L^2} dt_t dt_2 \\
&= \frac{2}{L^2} \left \{ \int_0^{L} \left [ \frac{t_1^3}{3} + t_2^2t_1\right ]_0^{t_2} dt_1\right \} \\
&= \frac{2}{L^2} \left \{ \int_0^{L} \left (\frac{t_2^3}{3} + t_2^3 \right ) \, dt_2 \right \} \\
&= \frac{2}{L^2} \int_0^L \frac{4}{3} t_2^3 \, dt_2 \\
&= \frac{2}{L^2} \left [ \frac{t_2^4}{3}\right ]_0^L \\
&= \frac{2}{3}L^2.
\end{align*}
[[/math]]