Revision as of 10:21, 6 May 2023 by Admin (Created page with "'''Solution: C''' The joint pdf of X and Y is <math display = "block"> f(x,y) = f_2(y | x) f_1(x) = (1/x)(1/12), \, 0 < y < x, 0 < x < 12. </math> Therefore, <math displa...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 06'23

Answer

Solution: C

The joint pdf of X and Y is

[[math]] f(x,y) = f_2(y | x) f_1(x) = (1/x)(1/12), \, 0 \lt y \lt x, 0 \lt x \lt 12. [[/math]]

Therefore,

[[math]] \operatorname{E}[X] = \int_0^{12}\int_0^x x \frac{1}{12x} dydx = \int_0^{12} \frac{y}{12} \Big |_0^x dx = \int_0^{12} \frac{x}{12} dx = \frac{x^2}{24} \Big |_0^{12} = 6 [[/math]]

[[math]] \operatorname{E}[Y] = \int_0^{12}\int_0^x y \frac{1}{12x} dydx = \int_0^{12} \frac{y}{24x} \Big |_0^x dx = \int_0^{12} \frac{x}{24} dx = \frac{x^2}{48} \Big |_0^{12} = \frac{144}{48} = 3 [[/math]]

[[math]] \operatorname{E}[XY] = \int_0^{12}\int_0^x \frac{y}{12} dydx = \int_0^{12} \left [\frac{y^2}{24} \right ]_0^x dx = \int_0^{12} \frac{x^2}{24} dx = \frac{x^3}{72} \Big |_0^{12} = \frac{(12)^2}{72} = 24. [[/math]]

[[math]] \operatorname{Cov}(X,Y) = \operatorname{E}[XY] – \operatorname{E}[X]\operatorname{E}[Y] = 24 − (3)(6) = 24 – 18 = 6 . [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00