Revision as of 11:03, 6 May 2023 by Admin (Created page with "An actuary analyzes a company’s annual personal auto claims, <math>M</math>, and annual commercial auto claims, <math>N</math>. The analysis reveals that <math>\operatorname...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
May 06'23

Exercise

An actuary analyzes a company’s annual personal auto claims, [math]M[/math], and annual commercial auto claims, [math]N[/math]. The analysis reveals that [math]\operatorname{\operatorname{Var}}(M) = 1600 [/math], [math]\operatorname{Var}(N) = 900 [/math], and the correlation between [math]M[/math] and [math]N[/math] is 0.64.

Calculate [math]\operatorname{\operatorname{Var}}(M + N)[/math].

  • 768
  • 2500
  • 3268
  • 4036
  • 4420

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
May 06'23

Solution: D

[[math]] \begin{align*} 0.64 &= \rho = \frac{\operatorname{Cov}(M,N)}{\sqrt{\operatorname{Var}(M) \operatorname{Var}(N)}} \\ \operatorname{Cov}(M,N) &= 0.64 \sqrt{1600(900)} = 768 \\ \operatorname{Var}(M+N) &= \operatorname{Var}(M) + \operatorname{Var}(N) + 2\operatorname{Cov}(M,N) = 1600 + 900 + 2(768) = 4036 \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00