Revision as of 11:03, 6 May 2023 by Admin (Created page with "An actuary analyzes a company’s annual personal auto claims, <math>M</math>, and annual commercial auto claims, <math>N</math>. The analysis reveals that <math>\operatorname...")
ABy Admin
May 06'23
Exercise
An actuary analyzes a company’s annual personal auto claims, [math]M[/math], and annual commercial auto claims, [math]N[/math]. The analysis reveals that [math]\operatorname{\operatorname{Var}}(M) = 1600 [/math], [math]\operatorname{Var}(N) = 900 [/math], and the correlation between [math]M[/math] and [math]N[/math] is 0.64.
Calculate [math]\operatorname{\operatorname{Var}}(M + N)[/math].
- 768
- 2500
- 3268
- 4036
- 4420
ABy Admin
May 06'23
Solution: D
[[math]]
\begin{align*}
0.64 &= \rho = \frac{\operatorname{Cov}(M,N)}{\sqrt{\operatorname{Var}(M) \operatorname{Var}(N)}} \\
\operatorname{Cov}(M,N) &= 0.64 \sqrt{1600(900)} = 768 \\
\operatorname{Var}(M+N) &= \operatorname{Var}(M) + \operatorname{Var}(N) + 2\operatorname{Cov}(M,N) = 1600 + 900 + 2(768) = 4036
\end{align*}
[[/math]]