Revision as of 09:15, 7 May 2023 by Admin (Created page with "'''Solution: D''' The density function of <math>T</math> is <math display = "block"> \begin{align*} \operatorname{E}[X] &= \operatorname{E}[\max{T,2}] = \int_0^2 \frac{2}{3}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 07'23

Answer

Solution: D

The density function of [math]T[/math] is

[[math]] \begin{align*} \operatorname{E}[X] &= \operatorname{E}[\max{T,2}] = \int_0^2 \frac{2}{3}e^{-t/3} dt + \int_{2}^{\infty}\frac{t}{3} e^{-t/3} dt \\ &= -2e^{-t/3} \Big |_0^2 -te^{-t/3} \Big |_2^{\infty} + \int_2^{\infty} e^{-t/3} dt \\ &= 2e^{-2/3} + 2 2e^{-2/3} -3e^{-t/3} \Big |_2^{\infty} \\ &= 2 + 3e^{-2/3}. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00