Revision as of 09:15, 7 May 2023 by Admin (Created page with "'''Solution: D''' The density function of <math>T</math> is <math display = "block"> \begin{align*} \operatorname{E}[X] &= \operatorname{E}[\max{T,2}] = \int_0^2 \frac{2}{3}...")
Exercise
ABy Admin
May 07'23
Answer
Solution: D
The density function of [math]T[/math] is
[[math]]
\begin{align*}
\operatorname{E}[X] &= \operatorname{E}[\max{T,2}] = \int_0^2 \frac{2}{3}e^{-t/3} dt + \int_{2}^{\infty}\frac{t}{3} e^{-t/3} dt \\
&= -2e^{-t/3} \Big |_0^2 -te^{-t/3} \Big |_2^{\infty} + \int_2^{\infty} e^{-t/3} dt \\
&= 2e^{-2/3} + 2 2e^{-2/3} -3e^{-t/3} \Big |_2^{\infty} \\
&= 2 + 3e^{-2/3}.
\end{align*}
[[/math]]