Revision as of 09:22, 7 May 2023 by Admin (Created page with "'''Solution: E''' The distribution function of <math>L</math> is <math>F(x) = 1-e^{-\lambda x} </math> and its variance is <math>1/\lambda^2 </math>. We are given <math dis...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 07'23

Answer

Solution: E

The distribution function of [math]L[/math] is [math]F(x) = 1-e^{-\lambda x} [/math] and its variance is [math]1/\lambda^2 [/math]. We are given

[[math]] \begin{align*} 1-e^{-2\lambda} = 1.9(1-e^{-\lambda}) \\ (1-e^{-\lambda})(1+e^{-\lambda}) = 1.9(1-e^{-\lambda}) \\ e^{-\lambda} = 0.9 \\ \lambda = -\ln(0.9) = 0.10536 \\ \operatorname{Var}(L) = 1/0.10536^2 = 90.1 \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00