Revision as of 09:22, 7 May 2023 by Admin (Created page with "'''Solution: E''' The distribution function of <math>L</math> is <math>F(x) = 1-e^{-\lambda x} </math> and its variance is <math>1/\lambda^2 </math>. We are given <math dis...")
Exercise
ABy Admin
May 07'23
Answer
Solution: E
The distribution function of [math]L[/math] is [math]F(x) = 1-e^{-\lambda x} [/math] and its variance is [math]1/\lambda^2 [/math]. We are given
[[math]]
\begin{align*}
1-e^{-2\lambda} = 1.9(1-e^{-\lambda}) \\
(1-e^{-\lambda})(1+e^{-\lambda}) = 1.9(1-e^{-\lambda}) \\
e^{-\lambda} = 0.9 \\
\lambda = -\ln(0.9) = 0.10536 \\
\operatorname{Var}(L) = 1/0.10536^2 = 90.1
\end{align*}
[[/math]]