Revision as of 10:47, 7 May 2023 by Admin (Created page with "'''Solution: D''' Let <math>I_A</math> = Event that Company A makes a claim <math>I_B</math> = Event that Company B makes a claim <math>X_A</math> = Expense paid to Compan...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 07'23

Answer

Solution: D

Let

[math]I_A[/math] = Event that Company A makes a claim

[math]I_B[/math] = Event that Company B makes a claim

[math]X_A[/math] = Expense paid to Company A if claims are made

[math]X_B [/math] = Expense paid to Company B if claims are made

Then we want to find

[[math]] \begin{align*} \operatorname{P}[ I^c_A ∩ I_B ] ∪ [( I_A ∩ I_B ) ∩ ( X_A \lt X_B ) ] &= \operatorname{P}[ I^c _A ∩ I_B ] + \operatorname{P}[( I_A ∩ I_B ) ∩ ( X_A \lt X_B )] \\ &= \operatorname{P}[ I^c_A ]\operatorname{P}[ I_B ] + \operatorname{P}[ I_A ] \operatorname{P}[ I_B ] \operatorname{P}[ X_A \lt X_B ] \\ &= ( 0.60 )( 0.30 ) + ( 0.40 )( 0.30 ) \operatorname{P}[ X_B − X_A ≥ 0] \\ &= 0.18 + 0.12 \operatorname{P}[ X_B − X_A ≥ 0] \end{align*} [[/math]]

Now [math]X_B − X_A[/math] is a linear combination of independent normal random variables. Therefore, [math]X_B − X_A[/math] is also a normal random variable with mean

[[math]] M = \operatorname{E} [ X_B − X_A ] = E [ X_B ] − E [ X_A ] = 9, 000 − 10, 000 = −1, 000 [[/math]]

and standard deviation

[[math]] \sigma = \sqrt{Var ( X_B ) + Var ( X_A )} = \sqrt{(2000)^2 + (2000)^2} = 2000 \sqrt{2}. [[/math]]

It follows that

[[math]] \begin{align*} \operatorname{P}[ X B − X A ≥ 0] &= \operatorname{P}[ Z ≥ \frac{1000}{2000 \sqrt{2}} ] \\ &= \operatorname{P}[Z \geq \frac{1}{2\sqrt{2}}] \\ &= 1 - \operatorname{P}[Z \lt \frac{1}{2\sqrt{2}}] \\ &= 1 − \operatorname{P}[ Z \lt 0.354] \\ &= 1 − 0.638 = 0.362 \end{align*} [[/math]]

Finally,

[[math]] \operatorname{P}[[ I^c_A ∩ I_B ]] ∪ [( I_A ∩ I_B ) ∩ ( X_A \lt X_B ) ]] = 0.18 + ( 0.12 )( 0.362 ) = 0.223. [[/math]]


Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00