Revision as of 10:47, 7 May 2023 by Admin (Created page with "'''Solution: D''' Let <math>I_A</math> = Event that Company A makes a claim <math>I_B</math> = Event that Company B makes a claim <math>X_A</math> = Expense paid to Compan...")
Exercise
ABy Admin
May 07'23
Answer
Solution: D
Let
[math]I_A[/math] = Event that Company A makes a claim
[math]I_B[/math] = Event that Company B makes a claim
[math]X_A[/math] = Expense paid to Company A if claims are made
[math]X_B [/math] = Expense paid to Company B if claims are made
Then we want to find
[[math]]
\begin{align*}
\operatorname{P}[ I^c_A ∩ I_B ] ∪ [( I_A ∩ I_B ) ∩ ( X_A \lt X_B ) ] &= \operatorname{P}[ I^c _A ∩ I_B ] + \operatorname{P}[( I_A ∩ I_B ) ∩ ( X_A \lt X_B )] \\
&= \operatorname{P}[ I^c_A ]\operatorname{P}[ I_B ] + \operatorname{P}[ I_A ] \operatorname{P}[ I_B ] \operatorname{P}[ X_A \lt X_B ] \\
&= ( 0.60 )( 0.30 ) + ( 0.40 )( 0.30 ) \operatorname{P}[ X_B − X_A ≥ 0] \\
&= 0.18 + 0.12 \operatorname{P}[ X_B − X_A ≥ 0]
\end{align*}
[[/math]]
Now [math]X_B − X_A[/math] is a linear combination of independent normal random variables. Therefore, [math]X_B − X_A[/math] is also a normal random variable with mean
[[math]]
M = \operatorname{E} [ X_B − X_A ] = E [ X_B ] − E [ X_A ] = 9, 000 − 10, 000 = −1, 000
[[/math]]
and standard deviation
[[math]]
\sigma = \sqrt{Var ( X_B ) + Var ( X_A )} = \sqrt{(2000)^2 + (2000)^2} = 2000 \sqrt{2}.
[[/math]]
It follows that
[[math]]
\begin{align*}
\operatorname{P}[ X B − X A ≥ 0] &= \operatorname{P}[ Z ≥ \frac{1000}{2000 \sqrt{2}} ] \\
&= \operatorname{P}[Z \geq \frac{1}{2\sqrt{2}}] \\
&= 1 - \operatorname{P}[Z \lt \frac{1}{2\sqrt{2}}] \\
&= 1 − \operatorname{P}[ Z \lt 0.354] \\
&= 1 − 0.638 = 0.362
\end{align*}
[[/math]]
Finally,
[[math]]
\operatorname{P}[[ I^c_A ∩ I_B ]] ∪ [( I_A ∩ I_B ) ∩ ( X_A \lt X_B ) ]] = 0.18 + ( 0.12 )( 0.362 ) = 0.223.
[[/math]]