Revision as of 14:36, 7 May 2023 by Admin (Created page with "'''Solution: C''' We use the relationships <math display = "block"> \operatorname{\operatorname{Var}}(aX +b) = a^2 \operatorname{\operatorname{Var}}(X), \, \operatorname{Cov...")
Exercise
ABy Admin
May 07'23
Answer
Solution: C
We use the relationships
[[math]]
\operatorname{\operatorname{Var}}(aX +b) = a^2 \operatorname{\operatorname{Var}}(X), \, \operatorname{Cov}(aX,bY) = ab \operatorname{Cov}(X,Y)
[[/math]]
and
[[math]]
\operatorname{\operatorname{Var}}(X + Y) = \operatorname{\operatorname{Var}}(X) + \operatorname{\operatorname{Var}}(Y) + 2\operatorname{Cov}(X,Y).
[[/math]]
First we observe
[[math]]
17,000 = \operatorname{Var} ( X + Y ) = 5000 + 10, 000 + 2 \operatorname{Cov}( X , Y )
[[/math]]
and so [math]\operatorname{Cov}(X,Y) = 1000 [/math]. We want to find
[[math]]
\begin{align*}
\operatorname{Var} [( X + 100 ) + 1.1Y] = \operatorname{Var}[( X + 1.1Y ) + 100 ] &= \operatorname{Var} [ X + 1.1Y ] \\ &
= \operatorname{Var} X + \operatorname{Var}[(1.1) Y ] + 2 \operatorname{Cov}( X ,1.1Y )\\
&= \operatorname{Var} X + (1.1)^2 \operatorname{Var} Y + 2 (1.1) \operatorname{Cov}( X , Y ) \\
&= 5000 + 12,100 + 2200 \\
&= 19,300.
\end{align*}
[[/math]]