Revision as of 18:13, 7 May 2023 by Admin (Created page with "'''Solution: C''' Note that <math display = "block"> \begin{align*} \operatorname{P}(Y = 0 | X = 1) &= \frac{\operatorname{P}(X=1, Y= 0)}{\operatorname{P}(X=1)} \\ &= \frac...")
Exercise
May 07'23
Answer
Solution: C
Note that
[[math]]
\begin{align*}
\operatorname{P}(Y = 0 | X = 1) &= \frac{\operatorname{P}(X=1, Y= 0)}{\operatorname{P}(X=1)} \\
&= \frac{\operatorname{P}(X=1,Y=0)}{\operatorname{P}(X=1,Y=0) + \operatorname{P}(X=1,Y=1)}\\
&= \frac{0.05}{0.05 + 0.125} = 0.286
\end{align*}
[[/math]]
[[math]]
\operatorname{P}(Y = 1 | X = 1) = 1 - \operatorname{P}(Y = 0 | X = 1) = 1-0.286 = 0.714.
[[/math]]
Therefore
[[math]]
\begin{align*}
\operatorname{E}(Y | X = 1) = (0) \operatorname{P}(Y = 0 | X = 1) + (1) \operatorname{P}(Y = 1 | X = 1) = (1)(0.714) = 0.714 \\
\operatorname{E}(Y^2 | X = 1) = (0)^2 \operatorname{P}(Y = 0 | X = 1) + (1)^2 \operatorname{P}(Y = 1 | X = 1) = 0.714 \\
\operatorname{Var}(Y | X = 1) = \operatorname{E}(Y^2 | X = 1) – [\operatorname{E}(Y | X = 1)]^2 = 0.714 – (0.714)2 = 0.20
\end{align*}
[[/math]]