Revision as of 18:54, 7 May 2023 by Admin (Created page with "'''Solution: C''' Due to the equal spacing of probabilities, <math>p= p_0 − nc</math> for <math>c = 1, 2, 3, 4, 5.</math> Also, <math display = "block">0.4 = p_0 + p_1 = p_...")
Exercise
ABy Admin
May 07'23
Answer
Solution: C
Due to the equal spacing of probabilities, [math]p= p_0 − nc[/math] for [math]c = 1, 2, 3, 4, 5.[/math] Also,
[[math]]0.4 = p_0 + p_1 = p_0 + p_0 − c = 2 p_0 − c.[[/math]]
Because the probabilities must sum to 1,
[[math]]1 = p_0 + p_0 − c + p_0 − 2c + p_0 − 3c + p_0 − 4c + p_0 − 5c = 6 p_0 − 15c. [[/math]]
This provides two equations in two unknowns. Multiplying the first equation by 15 gives [math]6 =30 p_0 − 15c[/math]. Subtracting the second equation gives [math]5= 24 p_0 ⇒ p_0= 5 / 24 .[/math]
Inserting this in the first equation gives [math]c = 1/60.[/math] The requested probability is
[[math]]
p_4 + p_5= 5 / 24 − 4 / 60 + 5 / 24 − 5 / 60= 32 /120= 0.267.
[[/math]]