Revision as of 00:28, 8 May 2023 by Admin (Created page with "The proportion <math>X</math> of yearly dental claims that exceed 200 is a random variable with probability density function <math display = "block"> f(x) = \begin{cases} 60...")
May 08'23
Exercise
The proportion [math]X[/math] of yearly dental claims that exceed 200 is a random variable with probability density function
[[math]]
f(x) = \begin{cases}
60 x^3 (1−x)^2, \, 0 \lt x \lt 1 \\
0, \, \textrm{otherwise}
\end{cases}
[[/math]]
Calculate [math]\operatorname{Var}[X/(1 – X)][/math].
- 149/900
- 10/7
- 6
- 8
- 10
May 08'23
Solution: C
[[math]]
\operatorname{E}(\frac{X}{1-X}) = 60 \int_0^1 \frac{x}{1-x} x^3 (1-x)^2 dx = 60 \int_0^1 x^4(1-x) dx = 60(x^5/5 - x^6/6) \Big |_0^1 = 60(1/5 -1/6) = 2
[[/math]]
[[math]]
\operatorname{E}[(\frac{X}{1-X})^2] = 60 \int_0^1 \frac{x^2}{(1-x)^2} x^3 (1-x)^2 dx = 60 \int_0^1 x^5 dx = 60(x^6/6 ) \Big |_0^1 = 60(1/6) = 10
[[/math]]
[[math]]
\operatorname{Var}\left( \frac{X}{1-X}\right) = 10-2^2 = 6.
[[/math]]