Revision as of 23:26, 8 May 2023 by Admin (Created page with "The number of claims <math>X</math> on a health insurance policy is a random variable with <math>\operatorname{E}[ X^2 ] = 61</math> and <math>\operatorname{E}[( X -1)^2 ] = 4...")
ABy Admin
May 09'23
Exercise
The number of claims [math]X[/math] on a health insurance policy is a random variable with [math]\operatorname{E}[ X^2 ] = 61[/math] and [math]\operatorname{E}[( X -1)^2 ] = 47 [/math] .
Calculate the standard deviation of the number of claims.
- 2.18
- 2.40
- 7.31
- 7.50
- 7.81
ABy Admin
May 09'23
Solution: A
[[math]]
\operatorname{E}[(X-1)^2] = \operatorname{E}[X^2] - 2\operatorname{E}[X] + 1 = 47
[[/math]]
so [math]\operatorname{E}[X] = (61 + 1 − 47) / 2= 7.5[/math]. The standard deviation is
[[math]]
\sqrt{\operatorname{E}[X^2] -\operatorname{E}[X]^2} = \sqrt{61 - 7.5^2} = 2.18.
[[/math]]