Revision as of 23:31, 8 May 2023 by Admin (Created page with "'''Solution: A''' <math display = "block"> \operatorname{E}[(X-1)^2] = \operatorname{E}[X^2] - 2\operatorname{E}[X] + 1 = 47 </math> so <math>\operatorname{E}[X] = (61 + 1...")
Exercise
ABy Admin
May 09'23
Answer
Solution: A
[[math]]
\operatorname{E}[(X-1)^2] = \operatorname{E}[X^2] - 2\operatorname{E}[X] + 1 = 47
[[/math]]
so [math]\operatorname{E}[X] = (61 + 1 − 47) / 2= 7.5[/math]. The standard deviation is
[[math]]
\sqrt{\operatorname{E}[X^2] -\operatorname{E}[X]^2} = \sqrt{61 - 7.5^2} = 2.18.
[[/math]]