Revision as of 17:50, 9 May 2023 by Admin (Created page with "'''Solution: C''' Let <math>T_1</math> be the time until the next Basic Policy claim, and let <math>T_2</math> be the time until the next Deluxe policy claim. Then the joint...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 09'23

Answer

Solution: C

Let [math]T_1[/math] be the time until the next Basic Policy claim, and let [math]T_2[/math] be the time until the next Deluxe policy claim. Then the joint pdf of [math]T_1[/math] and [math]T_2[/math] is

[[math]] f(t_1,t_2) = \left( \frac{1}{2} e^{-t_1/2}\right) \left( \frac{1}{3}e^{-t_2/3}\right) = \frac{1}{6}e^{-t_1/2}e^{-t_2/3}, 0 \lt t_1 \lt \infty, 0 \lt t_2 \lt \infty [[/math]]

and we need to find

[[math]] \begin{align*} P[T_1 \lt T_2] = \int_0^{\infty}\int_0^{t_1} \frac{1}{6} e^{-t_1/2}e^{-t_2/3} dt_2dt_1 &= \int_0^{\infty} \left[ -1\frac{1}{2} e^{-t_1/2}e^{-t_2/3}\right ]_0^{t_1} dt_1 \\ &= \int_0^{\infty}[\frac{1}{2}e^{-t_1/2} - \frac{1}{2}e^{-t_1/2}e^{-t_1/3}] dt_1 \\ &= \int_0^{\infty} \left[ \frac{1}{2}e^{-t_1/2} - \frac{1}{2} e^{-5t_1/6}\right] dt_1\\ & = \left [ -e^{-t_1/2} + \frac{3}{5}e^{-5t_1/6}\right]_0^{\infty} \\ &= 1- \frac{3}{5} = \frac{2}{5} \\ & = 0.4 \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00