Revision as of 12:33, 13 May 2023 by Admin (Created page with "'''Key: E''' The standard for full credibility is <math display="block">\left(\frac{1.645}{0.02}\right)^{2}\left(1+\frac{\operatorname{Var}(X)}{\operatorname{E}(X)^{2}}\right...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 13'23

Answer

Key: E

The standard for full credibility is

[[math]]\left(\frac{1.645}{0.02}\right)^{2}\left(1+\frac{\operatorname{Var}(X)}{\operatorname{E}(X)^{2}}\right)[[/math]]

where [math]X[/math] is the claim size variable. For the Pareto variable, [math]\operatorname{E}(X)=0.5 / 5=0.1[/math] and [math]\operatorname{Var}(X)=\frac{2(0.5)^{2}}{5(4)}-(0.1)^{2}=0.015[/math]. Then the standard is

[[math]]\left(\frac{1.645}{0.02}\right)^{2}\left(1+\frac{0.015}{0.1^{2}}\right)=16,913[[/math]]

claims.

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00