Revision as of 16:24, 13 May 2023 by Admin (Created page with "'''Key: B''' <math display = "block"> \begin{aligned} L(q) &= \left [ \binom{2}{0}(1-q)^2\right]^{5000} \left[ \binom{2}{1}q(1-q)\right]^{5000} = 2^{5000}q^{5000}(1-q)^{15000...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 13'23

Answer

Key: B

[[math]] \begin{aligned} L(q) &= \left [ \binom{2}{0}(1-q)^2\right]^{5000} \left[ \binom{2}{1}q(1-q)\right]^{5000} = 2^{5000}q^{5000}(1-q)^{15000} \\ l(q) &= 5000 \ln(2) + 5000 \ln(q) + 15000 \ln(1 − q) \\ l^{'}(q) &= 5000q^{−1} − 15000(1 − q)^{−1} = 0 \\ \hat{q} &= 0.25 \\ l(0.25) &= 5000 \ln(2) + 5000 \ln(0.25) + 15000 \ln(0.75) \\ &= −7780.97. \end{aligned} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00