Exercise
You are given the following information about a general liability book of business comprised of 2500 insureds:
- [math]X_i = \sum_{j=1}^{N_i}Y_{ij} [/math] is a random variable representing the annual loss of the i<supth insured.
- [math]N_1,N_2,\ldots,N_{2500}[/math] are independent and identically distributed random variables following a negative binomial distribution with parameters [math]r = 2[/math] and [math]\beta = 0.2[/math].
- [math]Y_{i1},Y_{i2},\ldots,Y_{iN}[/math] are independent and identically distributed random variables following a Pareto distribution with [math]\alpha = 3[/math] and [math]\theta = 1000 [/math].
- The full credibility standard is to be within 5% of the expected aggregate losses 90% of the time.
Calculate the partial credibility of the annual loss experience for this book of business using limited fluctuation credibility theory.
- 0.34
- 0.42
- 0.47
- 0.50
- 0.53
Key: C
[math]\operatorname{E}(N)=r \beta=0.4[/math]
[math]\operatorname{Var}(N)=r \beta(1+\beta)=0.48[/math]
[math]\operatorname{E}(Y)=\theta /(\alpha-1)=500[/math]
[math]\operatorname{Var}(Y)=\frac{\theta^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}=750,000[/math]
Therefore, [math]\operatorname{E}(X)=0.4(500)=200[/math]
[math]\operatorname{Var}(X)=0.4(750,000)+0.48(500)^{2}=420,000[/math].
The full credibility standard is [math]n=\left(\frac{1.645}{0.05}\right)^{2} \frac{420,000}{200^{2}}=11,365, \mathrm{Z}=\sqrt{2,500 / 11,365}=0.47[/math].