Revision as of 16:10, 13 May 2023 by Admin (Created page with "'''Key: C''' <math display="inline">\operatorname{E}(N)=r \beta=0.4</math> <math display="inline">\operatorname{Var}(N)=r \beta(1+\beta)=0.48</math> <math display="inline">...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 13'23

Answer

Key: C

[math]\operatorname{E}(N)=r \beta=0.4[/math]

[math]\operatorname{Var}(N)=r \beta(1+\beta)=0.48[/math]

[math]\operatorname{E}(Y)=\theta /(\alpha-1)=500[/math]

[math]\operatorname{Var}(Y)=\frac{\theta^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}=750,000[/math]

Therefore, [math]\operatorname{E}(X)=0.4(500)=200[/math]

[math]\operatorname{Var}(X)=0.4(750,000)+0.48(500)^{2}=420,000[/math].

The full credibility standard is [math]n=\left(\frac{1.645}{0.05}\right)^{2} \frac{420,000}{200^{2}}=11,365, \mathrm{Z}=\sqrt{2,500 / 11,365}=0.47[/math].

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00