Revision as of 20:04, 13 May 2023 by Admin (Created page with "'''Key: D''' For any deductible d and the given severity distribution <math display = "block"> \begin{aligned} \operatorname{E}[( X − d )_+ ] = \operatorname{E}[ X ) − \...")
Exercise
May 13'23
Answer
Key: D
For any deductible d and the given severity distribution
[[math]]
\begin{aligned}
\operatorname{E}[( X − d )_+ ] = \operatorname{E}[ X ) − \operatorname{E}[ X \wedge d ) &= 3000 − 3000 \left(1 - \frac{3000}{3000 +d} \right) \\
&= 3000 \left( \frac{3000}{3000 + d}\right) \\
& = \frac{9,000,000}{3,000 + d}
\end{aligned}
[[/math]]
So
[[math]] P_1 = 1.2 \frac{9,000,000}{3000 + 600} = 3000[[/math]]
Let r denote the reinsurer’s deductible relative to insured losses. Thus, the reinsurer’s deductible is 600 + r relative to losses. Thus
[[math]]
R_1 = 1.1 \left ( \frac{9,000,000}{3000 + 600 + 4}\right ) = 0.55P1 = 0.55(3000) = 1650 \Rightarrow r = 2400
[[/math]]
In Year 2, after 20% inflation, losses will have a Pareto distribution with [math]\alpha = 2 [/math] and [math]\theta = 1.2(3000) = 3600 [/math]. The general formula for expected claims with a deductible of [math]d[/math] is
[[math]]
\operatorname{E}[( X − d )_+ ] = 3600 \left( \frac{3600}{3600 + d}\right) = \frac{12,960,000}{3600 + d}
[[/math]]
[[math]]
P_2 = 1.2 \frac{12,960,000}{3000 + 600} = 3703, R_2 = 1.1 \frac{12,960,000}{3000 + 600 + 2400} = 2160, \frac{R_2}{P_2} = \frac{2160}{3703} = 0.583.
[[/math]]