Revision as of 22:07, 13 May 2023 by Admin (Created page with "'''Key: B''' The expected losses for the primary insurer are 0.6(4,000,000) = 2,400,000. The expected proportion of losses in the treaty layer is (1.6/1.7 – 1/1.7 = 0.35294...")
Exercise
May 13'23
Answer
Key: B
The expected losses for the primary insurer are 0.6(4,000,000) = 2,400,000. The expected proportion of losses in the treaty layer is (1.6/1.7 – 1/1.7 = 0.352941). The expected cost is 0.352941(2,400,000) = 847,058.
The relative cost of the layer can be derived using formulas from Loss Models as follows:
[[math]]
\begin{aligned}
&\frac{\operatorname{E}[ X \wedge 400, 000) − \operatorname{E}[ X \wedge 100, 000)}{\operatorname{E}[ X \wedge 500, 000)} \\
&= \frac{\operatorname{E}[ X \wedge 400, 000) / \operatorname{E}[ X \wedge 100, 000) − \operatorname{E}[ X \wedge 100, 000) / \operatorname{E}[ X \wedge 100, 000)}{\operatorname{E}[ X \wedge 500, 000) / \operatorname{E}[ X \wedge 100, 000)} \\
&= \frac{ILF (400, 000) − ILF (100, 000)}{ILF (500, 000)} = \frac{1.60 − 1.00}{1.70} = 0.352941.
\end{aligned}
[[/math]]