Revision as of 21:16, 13 May 2023 by Admin (Created page with "'''Key: E''' Subadditivity holds: <math>\rho ( X + Y ) = \operatorname{E}( X + Y ) = \operatorname{E}( X ) + \operatorname{E}(Y ) = \rho ( X ) + \rho (Y ) </math> Monotonici...")
Exercise
ABy Admin
May 13'23
Answer
Key: E
Subadditivity holds: [math]\rho ( X + Y ) = \operatorname{E}( X + Y ) = \operatorname{E}( X ) + \operatorname{E}(Y ) = \rho ( X ) + \rho (Y ) [/math]
Monotonicity holds: If [math]X ≤ Y[/math], then [math]\rho ( X ) = \operatorname{E}( X ) \leq \rho (Y ) = \operatorname{E}(Y ) [/math]
Positive homogeneity holds: [math]\rho (cX ) = \operatorname{E}(cX ) = c\operatorname{E}( X ) = c\rho ( X ) [/math]
Translation invariance holds: [math]\rho ( X + c) = \operatorname{E}( X + c) = \operatorname{E}( X ) + c = \rho ( X ) + c [/math]
Since [math]\rho ( X ) = \operatorname{E}( X )[/math] satisfies all four properties, it is coherent.