Revision as of 23:34, 13 May 2023 by Admin (Created page with "'''Key: A''' <math display = "block"> \begin{aligned} &\frac{p_k}{p_{k-1}} = a + \frac{b}{k} \Rightarrow 0.8 = a + \frac{b}{5} \quad \textrm{and} \frac{0.5}{0.8} = 0.625 = a...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


May 14'23

Answer

Key: A

[[math]] \begin{aligned} &\frac{p_k}{p_{k-1}} = a + \frac{b}{k} \Rightarrow 0.8 = a + \frac{b}{5} \quad \textrm{and} \frac{0.5}{0.8} = 0.625 = a + \frac{b}{6} \\ &\Rightarrow 0.8 − 0.625 = b(\frac{1}{5} - \frac{1}{6} ) \Rightarrow b = 5.25 \quad \textrm{and} \, a = -0.25. \\ &\Rightarrow \textrm{ N is binomial with } \, \frac{-q}{1-q} = -025 \quad \textrm{and} \, (m+1) \frac{q}{1-q} = 5.25 \Rightarrow m = 20 \quad \textrm{and} \, q = 0.2 \\ &\Rightarrow \operatorname{E}(N^M) = (1-p_0^M) \frac{mq}{1-(1-q)^m} = 3.64. \end{aligned} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00