Revision as of 00:06, 14 May 2023 by Admin (Created page with "You are given: {| class = "table table-bordered" | Number of Claims || Probability || Claim Size || Probability | <br> | <br> | <br> |- | 0 | 1/5 | | |- | 1 | 3/5 | 25 <...")
ABy Admin
May 14'23
Exercise
You are given:
Number of Claims | Probability | Claim Size | Probability | |||
0 | 1/5 | |||||
1 | 3/5 | 25 150 |
1/3 2/3 | |||
2 | 1/5 | 50 200 |
2/3 1/3 |
Claim sizes are independent.
Calculate the variance of the aggregate loss.
- 4,050
- 8,100
- 10,500
- 12,510
- 15,612
ABy Admin
May 14'23
Key: B
First obtain the distribution of aggregate losses:
Value | Probability |
---|---|
0 | [math]1 / 5[/math] |
25 | [math](3 / 5)(1 / 3)=1 / 5[/math] |
100 | [math](1 / 5)(2 / 3)(2 / 3)=4 / 45[/math] |
150 | [math](3 / 5)(2 / 3)=2 / 5[/math] |
250 | [math](1 / 5)(2)(2 / 3)(1 / 3)=4 / 45[/math] |
400 | [math](1 / 5)(1 / 3)(1 / 3)=1 / 45[/math] |
[[math]]\begin{aligned}
& \mu=(1 / 5)(0)+(1 / 5)(25)+(4 / 45)(100)+(2 / 5)(150)+(4 / 45)(250)+(1 / 45)(400)=105 \\
& \sigma^{2}=(1 / 5)\left(0^{2}\right)+(1 / 5)(25)+(4 / 45)\left(100^{2}\right)+(2 / 5)\left(150^{2}\right)+(4 / 45)\left(250^{2}\right) \\
& +(1 / 45)\left(400^{2}\right)-105^{2}=8100
\end{aligned}[[/math]]