Revision as of 09:07, 14 May 2023 by Admin (Created page with "'''Key: E''' <math display = "block"> \begin{aligned} &\operatorname{E}[ N ] = 0.7(0) + 0.2(2) + 0.1(3) = 0.7 \\ &\operatorname{E}[ N ] = 0.7(0) + 0.2(4) + 0.1(9) − 0.7 2 =...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
May 14'23

Answer

Key: E

[[math]] \begin{aligned} &\operatorname{E}[ N ] = 0.7(0) + 0.2(2) + 0.1(3) = 0.7 \\ &\operatorname{E}[ N ] = 0.7(0) + 0.2(4) + 0.1(9) − 0.7 2 = 1.21 \\ &\operatorname{E}[ X ] = 0.8(0) + 0.2(10) = 2 \\ &\operatorname{E}[ X ] = 0.8(0) + 0.2(100) − 2 2 = 16 \\ &\operatorname{E}[ S ] = \operatorname{E}[ N ] \operatorname{E}[ X ] = 0.7(2) = 1.4 \\ &\operatorname{E}[ S ] = \operatorname{E}[ N ]\operatorname{E}[ X ] + \operatorname{E}[ X ]^2\operatorname{E}[ N ] = 0.7(16) + 4(1.21) = 16.04 \\ &\operatorname{SD}( S ) = 16.04 = 4 \\ &\operatorname{Pr}( S \gt 1.4 + 2(4) = 9.4) = 1 − \operatorname{Pr}( S = 0) = 1 − 0.7 − 0.2(0.8)^2 − 0.1(0.8)^3 = 0.12 \end{aligned} [[/math]]

The last line follows because there are no possible values for S between 0 and 10. A value of 0 can be obtained three ways: no claims, two claims both for 0, three claims all for 0.

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00