Revision as of 15:25, 14 May 2023 by Admin (Created page with "Loss amounts have the distribution function <math display = "block"> F(x) = \begin{cases} (x/100)^2, \, 0 \leq x \leq 100 \\ 1, \, x> 100 \end{cases} </math> An insurance...")
ABy Admin
May 14'23
Exercise
Loss amounts have the distribution function
[[math]]
F(x) = \begin{cases} (x/100)^2, \, 0 \leq x \leq 100 \\
1, \, x\gt 100
\end{cases}
[[/math]]
An insurance policy pays 80% of the amount of the loss in excess of an ordinary deductible of 20, subject to a maximum payment of 60 per loss.
Calculate the conditional expected claim payment, given that a payment has been made.
- 37
- 39
- 43
- 47
- 49
ABy Admin
May 14'23
Key: B
Pays 80% of loss over 20, with cap of payment at 60, hence u = 60/0.8 + 20 = 95.
[[math]]
\begin{aligned}
\operatorname{E}[Y \textrm{per loss}) = \alpha [ \operatorname{E}[ X \wedge 95) − \operatorname{E}[ X \wedge 20)] = 0.8 \left [ \int_0^{95}S(x) dx - \int_0^{20}S(x) dx \right ] \\
= 0.8 \int_{20}^{95}S(x) dx = 0.8 \int_{20}^{95} (1 - \frac{x^2}{10,000} ) dx = 0.8 \left( x - \frac{x^3}{30,000} \right) \Big |_{20}^{95} = 37.35 \\
\operatorname{E}( Y \, \textrm{per payment} ) = \frac{\operatorname{E}(Y \, \textrm{per loss})}{1-F(20)} = \frac{37.35}{0.96} = 38.91
\end{aligned}
[[/math]]