Revision as of 19:34, 25 May 2023 by Admin (Created page with "You are given: <ul style="list-style-type:roman"> <li>The random walk model <math display = "block">y_t = y_0 + c_1 + c_2 + \cdots c_t</math></li> where <math>c_t, t = 0,1,2,...")
ABy Admin
May 25'23
Exercise
You are given:
- The random walk model [[math]]y_t = y_0 + c_1 + c_2 + \cdots c_t[[/math]] where [math]c_t, t = 0,1,2,\cdots, T [/math] denote observations from a white noise process.
- The following nine observed values of [math]c_t[/math]:
t [math]c_t[/math] 11 2 12 3 13 5 14 3 15 4 16 2 17 4 18 1 19 2 - The average value of [math]c_1, c_2 , \ldots , c_{10}[/math] is 2.
- The 9 step ahead forecast of [math]y_{19}[/math] , [math]\hat{y}_{19}[/math] , is estimated based on the observed value of [math]y_{10}[/math] .
Calculate the forecast error, [math]y_{19} - \hat{y}_{19}[/math].
- 1
- 2
- 3
- 8
- 18
ABy Admin
May 26'23
Key: D
[[math]]
\begin{aligned}
y_{10} &= y_0 + c_1 + \cdots + c_{10} = y_0 + 20 \\
y_{19} &= y_{10} + c_{11} + \cdots + c_{19} = y_0 + 20 + c_{11} + \cdots + c_{19} = y_0 + 20 + 26 = y_0 + 46 \\
\hat{y}_{19} &= y_{10} + \hat{c}_{11} + \cdots + \hat{c}_{19} = y_0 + 20 + 9(2) = y_0 + 38 \\
y_{19} − \hat{y}_{19} &= (y_0 + 46) − (y_0 + 38) = 8.
\end{aligned}
[[/math]]