Exercise
You are given the following six observed values of the autoregressive model of order one time series
t | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
yt | 31 | 35 | 37 | 41 | 45 | 51 |
with [math]\operatorname{Var}(\epsilon_t) = \sigma^2 [/math].
The approximation to the conditional least squares method is used to estimate [math]β_0[/math] and [math]β_1[/math] .
Calculate the mean squared error [math]s^2[/math] that estimates [math]σ^2.[/math]
- 13
- 21
- 22
- 26
- 35
The estimator of [math]\beta_1[/math] is
where [math]a_1[/math] equals
(31 − 40)(35 − 40) + (35 − 40)(37 − 40) + (37 − 40)(41 − 40) + (41 − 40)(45 − 40) + (45 − 40)(51 − 40) = 117
and [math]a_2[/math] equals
(31 − 40)2 + (35 − 40)2 + (37 − 40)2 + (41 − 40)2 + (45 − 40)2 + (51 − 40)2 = 262.
The estimator of [math]\beta_0[/math] is [math]b_0 = \overline{y}(1-r_1) = 22.136 [/math].
The residuals are then
e2 =35- (22.136 + 0.4466 × 31) = −0.9806
e3 =37−(22.136 + 0.4466 × 35) = −0.7670
e4 =41−(22.136 + 0.4466 × 37) = 2.3398
e5 =45−(22.136 + 0.4466 × 41) = 4.5534
e6 =51−(22.136 + 0.4466 × 45) = 8.7670
The average residual is [math]\overline{e} = 2.78252[/math] and then the mean square error is
where [math]a_1[/math] equals
(−0.9806 − 2.78252)2 + (−0.7670 − 2.78252)2 + (2.3398 − 2.78252) 2 + (4.5534 − 2.78252)2 + (8.7670 − 2.78252)2
and [math]a_2[/math] equals 6-3=3.