Revision as of 21:37, 17 November 2023 by Admin (Created page with "'''Solution: C''' Given the same principal invested for the same period of time yields the same accumulated value, the two measures of interest <math>i^{(2)}=0.04</math> and <math>\delta</math> must be equivalent, which means: <math display="block"> \begin{array}{l}{{\left(1+\frac{i^{(2)}}{2}\right)^{2}=e^{\delta},}}\\ {{e^{\delta}=\left(1+\frac{i^{(2)}}{2}\right)^{2}=1.02^{2}=1.0404}}\\ {{\delta=\ln(1.0404)=0.0396.}}\end{array} </math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 17'23

Answer

Solution: C

Given the same principal invested for the same period of time yields the same accumulated value, the two measures of interest [math]i^{(2)}=0.04[/math] and [math]\delta[/math] must be equivalent, which means:

[[math]] \begin{array}{l}{{\left(1+\frac{i^{(2)}}{2}\right)^{2}=e^{\delta},}}\\ {{e^{\delta}=\left(1+\frac{i^{(2)}}{2}\right)^{2}=1.02^{2}=1.0404}}\\ {{\delta=\ln(1.0404)=0.0396.}}\end{array} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00