Revision as of 21:37, 17 November 2023 by Admin (Created page with "'''Solution: C''' Given the same principal invested for the same period of time yields the same accumulated value, the two measures of interest <math>i^{(2)}=0.04</math> and <math>\delta</math> must be equivalent, which means: <math display="block"> \begin{array}{l}{{\left(1+\frac{i^{(2)}}{2}\right)^{2}=e^{\delta},}}\\ {{e^{\delta}=\left(1+\frac{i^{(2)}}{2}\right)^{2}=1.02^{2}=1.0404}}\\ {{\delta=\ln(1.0404)=0.0396.}}\end{array} </math> {{soacopyright | 2023 }}")
Exercise
ABy Admin
Nov 17'23
Answer
Solution: C
Given the same principal invested for the same period of time yields the same accumulated value, the two measures of interest [math]i^{(2)}=0.04[/math] and [math]\delta[/math] must be equivalent, which means:
[[math]]
\begin{array}{l}{{\left(1+\frac{i^{(2)}}{2}\right)^{2}=e^{\delta},}}\\ {{e^{\delta}=\left(1+\frac{i^{(2)}}{2}\right)^{2}=1.02^{2}=1.0404}}\\ {{\delta=\ln(1.0404)=0.0396.}}\end{array}
[[/math]]