Revision as of 22:20, 17 November 2023 by Admin (Created page with "'''Solution: E''' For Bruce, <math>100[(1+i)^{11}-(1+i)^{10}]=100(1+i)^{10}\,i\,.</math> Similarly, for Robbie, <math>50(1+i)^{16}\,i\,.</math> Dividing the second equation by the first gives <math>1 = (1+i)^{6}</math> which implies <math>i = 2^{1/6}-1 = 0.122462.</math>Thus <math>X=100(1.122462)^{10}(0.122462)=38.879.</math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 17'23

Answer

Solution: E

For Bruce, [math]100[(1+i)^{11}-(1+i)^{10}]=100(1+i)^{10}\,i\,.[/math] Similarly, for Robbie, [math]50(1+i)^{16}\,i\,.[/math] Dividing the second equation by the first gives [math]1 = (1+i)^{6}[/math] which implies [math]i = 2^{1/6}-1 = 0.122462.[/math]Thus [math]X=100(1.122462)^{10}(0.122462)=38.879.[/math]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00