Revision as of 22:31, 17 November 2023 by Admin (Created page with "The annual force of interest credited to a savings account is defined by <math display = "block"> \delta_t = \frac{\frac{t^{2}}{100}}{3+\frac{t^{3}}{150}} </math> with <math>t</math> in years. Austin deposits 500 into this account at time 0. Calculate the time in years it will take for the fund to be worth 2000. <ul class="mw-excansopts"><li>6.7</li><li>8.8</li><li>14.2</li><li>16.5</li><li>18.9</li></ul> {{soacopyright | 2023 }}")
ABy Admin
Nov 17'23
Exercise
The annual force of interest credited to a savings account is defined by
[[math]]
\delta_t = \frac{\frac{t^{2}}{100}}{3+\frac{t^{3}}{150}}
[[/math]]
with [math]t[/math] in years. Austin deposits 500 into this account at time 0.
Calculate the time in years it will take for the fund to be worth 2000.
- 6.7
- 8.8
- 14.2
- 16.5
- 18.9
ABy Admin
Nov 17'23
Solution: E
[[math]]
\begin{align*}
2000 &= 500 \exp \left( \int_{0}^t\frac{r^2/100}{3 + r^3/150} \, dr \right) \\
4 &= \exp \left(0.5 \int_{0}^t\frac{r^2/100}{3 + r^3/150} \, dr \right) = \exp\left[0.5\ln\left(3+\frac{r^{3}}{150}\right)\biggr|_{0}^{t} \right] \\
4 &= \exp\left[0.5\ln \left(1+\frac{t^{3}}{450}\right)\right]=\left(1+\frac{t^{3}}{450}\right)^{\frac{1}{2}} \\
16 &= (1 + \frac{t^3}{450}) \\
t &= 18.8988.
\end{align*}
[[/math]]