Revision as of 22:39, 17 November 2023 by Admin (Created page with "'''Solution: A''' Equating the accumulated values after 4 years provides an equation in K <math display = "block"> \begin{align*} 10(1+\frac{K}{25})^{4} &= 10\exp \left(\int_{0}^{*4}\frac{1}{K+0.25t}d t\right) \\ 4\ln(1+0.04K) &= \int_{0}^{4}\frac{1}{K+0.25t}d t=4\ln(K)+0.25t)\big|_{0}^{4} \\ &=4\ln(\operatorname{K}+0.25t)\big|_{0}^{4} \\ &=4\ln(K+1)-4\ln(K) = 4\ln\frac{K+1}{K} \\ & 1+0.04K = \frac{K+1}{K}\\ & 0.04K^2 = 1 \\ &K = 5 \end{align*} </math> Therefore <ma...")
Exercise
ABy Admin
Nov 17'23
Answer
Solution: A
Equating the accumulated values after 4 years provides an equation in K
[[math]]
\begin{align*}
10(1+\frac{K}{25})^{4} &= 10\exp \left(\int_{0}^{*4}\frac{1}{K+0.25t}d t\right) \\
4\ln(1+0.04K) &= \int_{0}^{4}\frac{1}{K+0.25t}d t=4\ln(K)+0.25t)\big|_{0}^{4} \\
&=4\ln(\operatorname{K}+0.25t)\big|_{0}^{4} \\
&=4\ln(K+1)-4\ln(K) = 4\ln\frac{K+1}{K} \\
& 1+0.04K = \frac{K+1}{K}\\
& 0.04K^2 = 1 \\
&K = 5
\end{align*}
[[/math]]
Therefore [math]X = 10(1+5/25)^4=20.74.[/math]