Revision as of 22:58, 17 November 2023 by Admin (Created page with "'''Solution: A''' We are given <math>i^{(4)}=8\%</math> and want to determine <math>i^{(12)}/12</math>.The equation that links the two and its solution is: <math display = "block"> \begin{aligned} \left(1+\frac{i^{(12)}}{12}\right)^{12}=\left(1+\frac{i^{(4)}}{4}\right)^{4}=\left(1+\frac{8\%}{4}\right)^{4} \\ \left(1+\frac{i^{(12)}}{12}\right)=\left(1+\frac{8\%}{4}\right)^{4/12} \\ \frac{i^{(12)}}{12}=\left(1+\frac{8\%}{4}\right)^{1/3}-1 \end{aligned} </math> {{soaco...")
Exercise
ABy Admin
Nov 17'23
Answer
Solution: A
We are given [math]i^{(4)}=8\%[/math] and want to determine [math]i^{(12)}/12[/math].The equation that links the two and its solution is:
[[math]]
\begin{aligned}
\left(1+\frac{i^{(12)}}{12}\right)^{12}=\left(1+\frac{i^{(4)}}{4}\right)^{4}=\left(1+\frac{8\%}{4}\right)^{4} \\
\left(1+\frac{i^{(12)}}{12}\right)=\left(1+\frac{8\%}{4}\right)^{4/12} \\
\frac{i^{(12)}}{12}=\left(1+\frac{8\%}{4}\right)^{1/3}-1
\end{aligned}
[[/math]]