Revision as of 01:00, 18 November 2023 by Admin (Created page with "'''Solution: D''' First, find <math>a(t)</math> <math display = "block"> a(t)=\exp \left[\int_0^t \delta_r d r\right]=\exp \left[\int_0^t \frac{r}{50} d r\right]=\exp \left[t^2 / 100\right] </math> The balance in the account at time 10 is: <math>300 a(10)+X \frac{a(10)}{a(4)}=815.48+2.31637 X</math> The total interest earned from <math>t=0</math> to <math>t=10</math> is: <math display = "block">815.48+2.31637 X-(300+X)=4 X \Rightarrow X=192.08</math>. {{soacopyright |...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: D

First, find [math]a(t)[/math]

[[math]] a(t)=\exp \left[\int_0^t \delta_r d r\right]=\exp \left[\int_0^t \frac{r}{50} d r\right]=\exp \left[t^2 / 100\right] [[/math]]

The balance in the account at time 10 is: [math]300 a(10)+X \frac{a(10)}{a(4)}=815.48+2.31637 X[/math] The total interest earned from [math]t=0[/math] to [math]t=10[/math] is:

[[math]]815.48+2.31637 X-(300+X)=4 X \Rightarrow X=192.08[[/math]]

.

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00