Revision as of 01:12, 18 November 2023 by Admin (Created page with "The annual force of interest is <math>\delta_t=\frac{2}{10-t}</math>, for <math>0 \leq t<10</math>, in which <math>t</math> is measured in years. Calculate the equivalent annual nominal discount rate compounded every two years for the period <math>2.0 \leq t \leq 2.4</math>. <ul class="mw-excansopts"><li>1,758</li><li>1,828</li><li>1,901</li><li>2,078</li><li>2,262</li></ul> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Nov 18'23

Exercise

The annual force of interest is [math]\delta_t=\frac{2}{10-t}[/math], for [math]0 \leq t\lt10[/math], in which [math]t[/math] is measured in years.

Calculate the equivalent annual nominal discount rate compounded every two years for the period [math]2.0 \leq t \leq 2.4[/math].

  • 1,758
  • 1,828
  • 1,901
  • 2,078
  • 2,262

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Nov 18'23

Solution: A

[[math]]\left(1-\frac{d^{(1 / 2)}}{0.5}\right)^{-0.5(0.4)}=\exp \left(\int_{2.0}^{2.4} \frac{2}{10-t} d t\right)[[/math]]
[[math]] \begin{aligned} & \left(1-2 d^{(1 / 2)}\right)^{-0.2}=\exp \left[-\left.2 \ln (10-t)\right|_{2.0} ^{2.4}\right] \\ & \left(1-2 d^{(1 / 2)}\right)^{-0.2}=\left(\frac{8}{7.6}\right)^2 \\ & d^{(1 / 2)}=0.20063 \end{aligned} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00