Revision as of 01:12, 18 November 2023 by Admin (Created page with "'''Solution: A''' <math display = "block">\left(1-\frac{d^{(1 / 2)}}{0.5}\right)^{-0.5(0.4)}=\exp \left(\int_{2.0}^{2.4} \frac{2}{10-t} d t\right)</math> <math display="block"> \begin{aligned} & \left(1-2 d^{(1 / 2)}\right)^{-0.2}=\exp \left[-\left.2 \ln (10-t)\right|_{2.0} ^{2.4}\right] \\ & \left(1-2 d^{(1 / 2)}\right)^{-0.2}=\left(\frac{8}{7.6}\right)^2 \\ & d^{(1 / 2)}=0.20063 \end{aligned} </math> {{soacopyright | 2023 }}")
Exercise
ABy Admin
Nov 18'23
Answer
Solution: A
[[math]]\left(1-\frac{d^{(1 / 2)}}{0.5}\right)^{-0.5(0.4)}=\exp \left(\int_{2.0}^{2.4} \frac{2}{10-t} d t\right)[[/math]]
[[math]]
\begin{aligned}
& \left(1-2 d^{(1 / 2)}\right)^{-0.2}=\exp \left[-\left.2 \ln (10-t)\right|_{2.0} ^{2.4}\right] \\
& \left(1-2 d^{(1 / 2)}\right)^{-0.2}=\left(\frac{8}{7.6}\right)^2 \\
& d^{(1 / 2)}=0.20063
\end{aligned}
[[/math]]