Revision as of 01:18, 18 November 2023 by Admin (Created page with "'''Solution: D''' <math display = "block"> \begin{aligned} & a(t)=\exp \left(\int_0^t \frac{1}{r+8} d r\right) \\ & =\exp \left[\left.\ln (t+8)\right|_0 ^t\right] \\ & =\exp [\ln (t+8)-\ln (8)] \\ & =\exp \left(\ln \frac{t+8}{8}\right)=\frac{t+8}{8} \\ & \frac{a(5)}{a(4)}=\frac{13 / 8}{12 / 8}=1.08333 \\ & i_5=0.08333\end{aligned} </math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: D

[[math]] \begin{aligned} & a(t)=\exp \left(\int_0^t \frac{1}{r+8} d r\right) \\ & =\exp \left[\left.\ln (t+8)\right|_0 ^t\right] \\ & =\exp [\ln (t+8)-\ln (8)] \\ & =\exp \left(\ln \frac{t+8}{8}\right)=\frac{t+8}{8} \\ & \frac{a(5)}{a(4)}=\frac{13 / 8}{12 / 8}=1.08333 \\ & i_5=0.08333\end{aligned} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00