Revision as of 08:46, 18 November 2023 by Admin
Exercise
ABy Admin
Nov 18'23
Answer
Solution: A
[[math]]
\begin{align*}
167.50 &=10a_{\overline{5}|9.2\%}+10(1.092)^{-5}\sum_{t=1}^{c}\left[\frac{(1+k)}{1\cdot092}\right]^{t} \\
167.50 &=38.6955+6.44001{\frac{(1+k)/1.092}{1-(1+k)/1.092}} \\
(167.50-38.6955)[1-(1+k)/1.092] &= 6.4400](1+k)/1.092 \\
128.8045 &= 135.24451(1+k)/1.092 \\
1+k &= 0.0400 \\
k &= 0.0400 \Rightarrow K= 4.0\%
\end{align*}
[[/math]]