Revision as of 10:38, 18 November 2023 by Admin (Created page with "'''Solution: A''' Present value for the first 10 years is <math display = "block">{\frac{1-\left(1.06\right)^{-10}}{\ln\left(1.06\right)}}=7.58 </math> Present value of the payments after 10 years is <math display = "block"> \left(1.06\right)^{-10}\int_{0}^{\infty}\left(1.03\right)^{s}\left(1.06\right)^{-s}d s={\frac{0.5584}{\ln\left(1.06\right)-\ln\left(1.03\right)}}=19.45 </math> Total present value = 27.03 {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: A

Present value for the first 10 years is

[[math]]{\frac{1-\left(1.06\right)^{-10}}{\ln\left(1.06\right)}}=7.58 [[/math]]

Present value of the payments after 10 years is

[[math]] \left(1.06\right)^{-10}\int_{0}^{\infty}\left(1.03\right)^{s}\left(1.06\right)^{-s}d s={\frac{0.5584}{\ln\left(1.06\right)-\ln\left(1.03\right)}}=19.45 [[/math]]

Total present value = 27.03

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00