Revision as of 11:49, 18 November 2023 by Admin (Created page with "'''Solution: E''' Let n be the number of payments and let j be the interest rate per half-year. Because the given values are n – 1 half-years apart, <math display = "block"> 7,968.89(1+j)^{n-1}=19,549.25. </math> Also, <math display = "block"> 7.968.89=1,000\ddot{a}_{\overline{n}|}=1,000(a_{\overline{n-1}|})+1)=1,000\left(\frac{1-\nu^{n-1}}{j}+1\right)=1.000\left(\frac{1-7,968.89\cdot19.549.25}{j}+1\right) </math> Then, <math display = "block"> j={\frac{1-7,968.8...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: E

Let n be the number of payments and let j be the interest rate per half-year. Because the given values are n – 1 half-years apart,

[[math]] 7,968.89(1+j)^{n-1}=19,549.25. [[/math]]

Also,

[[math]] 7.968.89=1,000\ddot{a}_{\overline{n}|}=1,000(a_{\overline{n-1}|})+1)=1,000\left(\frac{1-\nu^{n-1}}{j}+1\right)=1.000\left(\frac{1-7,968.89\cdot19.549.25}{j}+1\right) [[/math]]

Then,

[[math]] j={\frac{1-7,968.89/19.549.25}{1,968.89}}=0.085 [[/math]]

for [math]i = (1.85)^2 -1 = 0.1772 = 17.7\%[/math]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00