Revision as of 11:49, 18 November 2023 by Admin (Created page with "'''Solution: E''' Let n be the number of payments and let j be the interest rate per half-year. Because the given values are n – 1 half-years apart, <math display = "block"> 7,968.89(1+j)^{n-1}=19,549.25. </math> Also, <math display = "block"> 7.968.89=1,000\ddot{a}_{\overline{n}|}=1,000(a_{\overline{n-1}|})+1)=1,000\left(\frac{1-\nu^{n-1}}{j}+1\right)=1.000\left(\frac{1-7,968.89\cdot19.549.25}{j}+1\right) </math> Then, <math display = "block"> j={\frac{1-7,968.8...")
Exercise
ABy Admin
Nov 18'23
Answer
Solution: E
Let n be the number of payments and let j be the interest rate per half-year. Because the given values are n – 1 half-years apart,
[[math]]
7,968.89(1+j)^{n-1}=19,549.25.
[[/math]]
Also,
[[math]]
7.968.89=1,000\ddot{a}_{\overline{n}|}=1,000(a_{\overline{n-1}|})+1)=1,000\left(\frac{1-\nu^{n-1}}{j}+1\right)=1.000\left(\frac{1-7,968.89\cdot19.549.25}{j}+1\right)
[[/math]]
Then,
[[math]]
j={\frac{1-7,968.89/19.549.25}{1,968.89}}=0.085
[[/math]]
for [math]i = (1.85)^2 -1 = 0.1772 = 17.7\%[/math]