Revision as of 12:06, 18 November 2023 by Admin (Created page with "'''Solution: E''' The value at time 17 of the payments beginning at time 18 is <math display = "block"> 2500\left(\frac{1+k}{1.035}+\frac{\left(1+k\right)^{2}}{0.035^{2}}+\cdots\right)=2500\frac{\frac{1+k}{1.035}}{1-\frac{1+k}{1.035}}=2500\frac{1+k}{0.035-k} </math> The total present value is <math display = "block"> \begin{array}{c}{{1\,15,000=2500(1.035^{-2})a_{\overline{15}|0.035}+2500v^{17}\,\frac{1+k}{0.035-k}}}\\ {{46(0.035-k)=10.751\,6(0.035-k)+0.55720(1+k)}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: E

The value at time 17 of the payments beginning at time 18 is

[[math]] 2500\left(\frac{1+k}{1.035}+\frac{\left(1+k\right)^{2}}{0.035^{2}}+\cdots\right)=2500\frac{\frac{1+k}{1.035}}{1-\frac{1+k}{1.035}}=2500\frac{1+k}{0.035-k} [[/math]]

The total present value is

[[math]] \begin{array}{c}{{1\,15,000=2500(1.035^{-2})a_{\overline{15}|0.035}+2500v^{17}\,\frac{1+k}{0.035-k}}}\\ {{46(0.035-k)=10.751\,6(0.035-k)+0.55720(1+k)}} \\ k=\frac{1.61-0.3763\,1-0.55720}{46-10.751\,6+0.5720}=0.01889 \end{array} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00