Revision as of 12:13, 18 November 2023 by Admin (Created page with "'''Solution: D''' Equate the accumulated value of the deposits to the present value of the perpetuity: <math display = "block"> \begin{aligned} (Is)_{\overline{10}|} = \frac{\ddot{s}_{\overline{10}|}}{i} = \frac{10}{i} \\ \ddot{s}_{\overline{10}|}-10 = 10 \\ \ddot{s}_{\overline{10}|} = 20 (\textrm{using the BAII Plus}) \implies i = 12.3\% \end{aligned} </math> The PV of the perpetuity is 10/0.123 = 81.30. {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: D

Equate the accumulated value of the deposits to the present value of the perpetuity:

[[math]] \begin{aligned} (Is)_{\overline{10}|} = \frac{\ddot{s}_{\overline{10}|}}{i} = \frac{10}{i} \\ \ddot{s}_{\overline{10}|}-10 = 10 \\ \ddot{s}_{\overline{10}|} = 20 (\textrm{using the BAII Plus}) \implies i = 12.3\% \end{aligned} [[/math]]

The PV of the perpetuity is 10/0.123 = 81.30.

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00