Revision as of 19:18, 18 November 2023 by Admin (Created page with "'''Solution: B''' <math display = "block"> \begin{aligned} & 1000 \cdot a_{20 \mid i}=\frac{600}{i}+\frac{600 v^{10}}{i} \\ & 5\left(\frac{1-v^{20}}{i}\right)=\frac{3}{i}\left(1+v^{10}\right) \\ & 5-5 v^{20}=3+3 v^{10} \\ & 0=5 v^{20}+3 v^{10}-2 \\ & \text { Let } x=v^{10}=\frac{-3 \pm \sqrt{9+4(5)(2)}}{2(5)}=\frac{-3 \pm 7}{10}=0.4 \Rightarrow i=9.59582 \% \\ & X=\frac{600}{0.0959582}(1+0.4)=8753.8\end{aligned} </math> {{soacopyright | 2023 }}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Nov 18'23

Answer

Solution: B

[[math]] \begin{aligned} & 1000 \cdot a_{20 \mid i}=\frac{600}{i}+\frac{600 v^{10}}{i} \\ & 5\left(\frac{1-v^{20}}{i}\right)=\frac{3}{i}\left(1+v^{10}\right) \\ & 5-5 v^{20}=3+3 v^{10} \\ & 0=5 v^{20}+3 v^{10}-2 \\ & \text { Let } x=v^{10}=\frac{-3 \pm \sqrt{9+4(5)(2)}}{2(5)}=\frac{-3 \pm 7}{10}=0.4 \Rightarrow i=9.59582 \% \\ & X=\frac{600}{0.0959582}(1+0.4)=8753.8\end{aligned} [[/math]]

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00